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Abstract—To efficiently trade off system sum-rate and link
fairness, this paper is dedicated to maximizing the sum of α-fair
utility in spectrum-sharing networks, where multiple interfering
links share one channel. Whereas three special cases including
α = 0 (sum-rate maximization), α = 1 (proportional fairness)
and α = ∞ (max-min fairness) have been investigated in the
literature, the complexity for cases 1 < α < ∞ and 0 < α < 1
is still unknown. In this paper, we prove that the problem is
convex when 1 < α < ∞ and is NP-hard when 0 < α < 1.
To deal with the latter case, we transform the objective function
into a D.C. (difference of two concave functions) function. Then,
a power allocation algorithm is proposed with fast convergence to
a local optimal point. Simulation results show that the proposed
algorithm can obtain global optimality in two-link cases when
0 < α < 1. In addition, we can get a flexible tradeoff between
sum-rate and fairness in terms of Jain’s index by adjusting α.

Index Terms—Power allocation, sum-rate, α-fair, tradeoff,
Jain’s index

I. INTRODUCTION

THE broadcast nature of wireless communications brings
about serious co-channel interference and limits the

system performance [1]. In such kind of spectrum-sharing
systems, power allocation (PA) is a crucial issue for co-channel
interference management, which can further be applied to
improve system sum-rate, enhance link fairness and simul-
taneously prolong battery life of mobile terminals [2].

The sum-rate and the fairness of all links are two crucial
performance indexes which need to be improved or maxi-
mized. Towards these two ends, the sum-rate and min-rate
maximization problems have been well studied. Here, min-
rate maximization, usually referred to as max-min fairness, can
lead to the fairest rates of all links. For a network with multiple
links and only one tone (frequency band), it has been shown
in [3] by Luo that the sum-rate maximization problem is NP-
hard, while max-min fairness can be achieved through linear
programming (LP). Moreover, for the sum-rate maximization
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problem, many other works focused on designing algorithms
either to find local optimality with low complexity or global
optimality with high complexity [1], [2], [4]–[8].

The sum-rate and the degree of fairness are just like the two
ends of a seesaw: improving one will often decrease the other
[9]. In other words, maximizing sum-rate usually leads to the
most unfair case, while min-rate maximization often results in
low sum-rate. Therefore, an efficient tradeoff between sum-
rate and fairness is also needed. In the literature, proportional
fairness has been achieved by maximizing the sum-utility of
all links, where each link’s utility is the logarithm of its
received rate. Also in [3], Luo has shown that this is a convex
optimization problem when there are multiple links and only
one tone.

Nevertheless, as a special tradeoff point, proportional fair-
ness can not offer a smooth tradeoff between sum-rate and
fairness. For this purpose, α-fair (α > 0) power allocation
may be a candidate, which can be achieved by maximizing
the sum of α-fair utilities of all links [9]. As a larger α
corresponds to a more fair case, varying α from zero to ∞
can smoothly control the tradeoff from the most unfair case to
the most fair one. What should be emphasized is that α = 0,
α = 1 and α = ∞ just correspond to sum-rate maximization,
proportional fairness and max-min fairness, respectively. As a
result, in this paper, we focus on two intervals 1 < α < ∞ and
0 < α < 1 in spectrum-sharing networks, where multiple links
utilize the same one frequency band. For power allocation with
other utility functions and other network models, one can refer
to [3], [5], [10]–[12] and references therein.

Although the objective function of the considered problem
in this paper is not concave, it is still of great importance for us
to figure out the complexity of the problem. This importance
comes from the fact that a nonconvex problem at the first
glance can be convex by appropriate reformulation [3], [8],
[12]. Actually, we show that it is a convex problem when
1 < α < ∞ and NP-hard when 0 < α < 1. For the case 0 <
α < 1, we first transform the objective into a D.C. function,
and then propose an iterative algorithm with fast convergence
to a local optimal point, where a convex optimization is carried
out in each iteration.

The contributions of this paper are threefold. First, for
1 < α < ∞, we prove that the α-fair PA problem is convex.
Second, for 0 < α < 1, we prove that the α-fair PA problem
is NP-hard. Third, for the NP-hard case 0 < α < 1, we
propose an efficient algorithm with fast convergence to a local
optimal point. In particular, the algorithm can lead to the
global optimality in two-link cases.
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The rest of this paper is organized as follows. In Section II,
the system model is characterized and the considered problem
is formulated. Section III discusses the complexity of the
problem for cases 1 < α < ∞ and 0 < α < 1. Section
IV presents an efficient algorithm for the case 0 < α < 1. In
Section V, some simulation results are given. Finally, Section
VI concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first characterize the system model. Then,
the α-fair PA problem is formulated.

A. System Model

As in many literatures, we consider a standard spectrum-
sharing wireless network, where there are M distinc-
t transmitter-receiver pairs (links) [3], [13]. All of the M links
utilize the same system frequency band for achieving high
spectrum efficiency. For simplicity, we normalize the system
bandwidth as 1(Hz).

The channel fading coefficient from the transmitter of link
i to the receiver of link j is denoted by hi,j . All the channel
fading coefficients are independent and identically distributed
(i.i.d.) with CN (0, 1). We consider a static snapshot of the
network, i.e., hi,j remains constant during the observation
time. Denote by p = (p1, p2, · · · , pM )T the transmit power
vector, in which pi represents the transmit power of link i.
Then, utilizing Shannon rate expression, we get the received
rate of link i as

Ri(p) = log2

(
1 +

Gi,ipi

ni +
∑M

j=1,j ̸=i Gj,ipj

)
bps,

i = 1, 2, · · · ,M, (1)

where Gj,i = |hj,i|2 and ni is the receiving noise power at
the receiver of link i.

B. Problem Formulation

We denote by Uα(x)(α ≥ 0) the α-fair utility function,
which was firstly given in [14] as

Uα(x) =

{
ln(x), if α = 1
1

1−αx
1−α, otherwise.

(2)

Assume that link i receives utility Uα(Ri(p)) when its received
rate is Ri(p). Then, maximizing the sum-utility of all links
results in α-fair PA. As has been pointed out in Section I, cases
α = 0, α = 1 and α = ∞ have been addressed. Therefore,
we focus on the following α-fair PA problem for cases 1 <
α < ∞ and 0 < α < 1:

max
p

M∑
i=1

1

1− α

(
log2

(
1 +

Gi,ipi

ni +
∑M

j=1,j ̸=i Gj,ipj

))1−α

(3)
s.t. C1 : 0 ≤ pi ≤ pmax

i , i = 1, 2, · · · ,M, (3-a)

C2 : log2

(
1 +

Gi,ipi

ni +
∑M

j=1,j ̸=i Gj,ipj

)
≥ Rreq

i ,

i = 1, 2, · · · ,M, (3-b)

where pmax
i and Rreq

i denote the maximum allowed trans-
mit power and the minimum required data rate of link
i, respectively. For simplicity, we denote by pmax =
(pmax

1 , pmax
2 , · · · , pmax

M )T .

III. COMPLEXITY DISCUSSIONS

In this section, we present the complexity analysis for cases
1 < α < ∞ and 0 < α < 1 individually.

A. Case 1 < α < ∞
The following theorem clarifies the complexity for this case.

Theorem 1. The problem given in Eq.(3) is convex when 1 <
α < ∞.

Proof: We first replace the optimization variable pi by
exp(yi). In addition, as α-fair utility function and exp(x) are
monotonically increasing, we can introduce variables ti (i =
1, 2, · · · ,M ) and transform the α-fair problem as

max
y,t

M∑
i=1

1

1− α
(exp(ti))

1−α (4)

s.t. exp(yi) ≤ pmax
i , i = 1, 2, · · · ,M, (4-a)

log2

(
1 +

Gi,i exp(yi)

ni +
∑

j ̸=i Gj,i exp(yj)

)
≥ Rreq

i ,

i = 1, 2, · · · ,M, (4-b)

log2

(
1 +

Gi,i exp(yi)

ni +
∑

j ̸=i Gj,i exp(yj)

)
≥ exp(ti),

i = 1, 2, · · · ,M, (4-c)

where y and t are given by y = (y1, y2, · · · , yM )T and t =
(t1, t2, · · · , tM )T , respectively.

It can be easily checked that the objective function is
concave when 1 < α < ∞ and the constraints in Eq.(4-a)
and Eq.(4-b) are linear. As for Eq.(4-c), we can transform it
into

ln

 ni

Gi,i
exp(−yi) +

∑
j ̸=i

Gj,i

Gi,i
exp(yj − yi)


+ ln

(
2exp(ti) − 1

)
≤ 0, i = 1, 2, · · · ,M.

(5)

Because the log-sum-exp function and ln
(
2exp(ti) − 1

)
are

convex [3], the constraint in Eq.(4-c) is also convex. As a
result, the problem given in Eq.(3) is convex.

According to Theorem 1, the problem given in Eq.(3) can
be efficiently solved when 1 < α < ∞ by standard solvers
such as inter-point method [15].

B. Case 0 < α < 1

For this case, we present a theorem given as follows.

Theorem 2. The problem given in Eq.(3) is NP-hard when
0 < α < 1.
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Proof: Considering Rreq
i = 0, pmax

i = 1 and ni

Gi,i
= A

for all links, we rewrite the α-fair PA problem as

max
p

1

1− α

M∑
i=1

(
log2

(
1 +

pi
A+

∑
j ̸=i βj,ipj

))1−α

(6)
s.t. 0 ≤ pi ≤ 1, i = 1, 2, · · · ,M, (6-a)

where βj,i =
Gj,i

Gi,i
.

On the other hand, suppose there is a connected undirected
graph G = (V, E) with M vertices, where V is the vertex set
(|V| = M ) and E is the edge set. We define βi,j as

βi,j =

{
∞, if (vi, vj) ∈ E ,
0, otherwise.

(7)

It is known that finding the maximum independent set of a
graph is NP-hard. In the following, we show that solving the
problem given in Eq.(6) is equivalent to finding the maximum
independent set of G.

Consider all the B =
(|V|

0

)
+
(|V|

1

)
+
(|V|

2

)
+ · · · +

(|V|
|V|
)

subsets of V , denoted by B1,B2, · · · ,BB , form a set B.
Here,

(|V|
k

)
represents the combination operation, denoting

the number of different ways of selecting k vertexes out of
|V| vertexes. Then, according to set B, the feasible region Ω
of the problem in Eq.(6) can be partitioned into B disjoint
subregions. Particularly, the kth subregion Ωk is

Ωk = {p|0 < pi ≤ 1, if vi ∈ Bk; pi = 0, otherwise }. (8)

Obviously, we have Ωk

∩
Ωm = ϕ (k ̸= m) and

∪B
k=1 Ωk =

Ω. Then, we can solve the problem in two steps:

Step 1: First, in each feasible subregion, we find a candidate
point that maximizes the objective function;

Step 2: Second, among B candidate points, the one who has
the largest objective function value is the optimal
solution.

In the following, we discuss Step 1 and Step 2 in detail.

• Step 1
In feasible subregion Ωk, the candidate point is the
solution to the problem given by

max
p

1

1− α

M∑
i=1

(
log2

(
1 +

pi
A+

∑
j ̸=i βj,ipj

))1−α

(9)
s.t. 0 < pi ≤ 1, ∀vi ∈ Bk, (9-a)

pi = 0, ∀vi /∈ Bk. (9-b)

Now, assume that there are two links vi and vj in Bk

such that (vi, vj) ∈ E . In this case, both of link i and
link j get zero rate. This is because link i produces
infinite interference to link j according to βi,j = ∞ and
vice versa. Therefore, only the isolated nodes in graph
(Bk, E) have nonzero rate. Let F(Bk) be the subset of
Bk composed of all the isolated nodes. Now, problem in

Eq.(9) becomes

max
p

1

1− α

∑
i∈F(Bk)

(
log2

(
1 +

pi
A

))1−α

(10)

s.t. 0 < pi ≤ 1, ∀vi ∈ Bk, (10-a)
pi = 0, ∀vi /∈ Bk. (10-b)

Obviously, the optimal value of the problem in Eq.(10)
is

|F(Bk)|(1− α)−1

(
log2

(
1 +

1

A

))1−α

. (11)

• Step 2
Among B candidate points obtained in Step 1, we need
to find the one who leads to the highest objective function
value. This is to solve the problem given by

max
k=1,2,··· ,B

|F(Bk)|(1− α)−1
(
log2

(
1 + 1

A

))1−α
,(12)

which is further equivalent to

max
k=1,2,··· ,B

|F(Bk)|. (13)

It can be easily checked that solving the problem in Eq.(13)
is equivalent to determining the size of the maximum indepen-
dent set in graph G = (V, E). Hence, the proof ends.

As the problem in Eq.(3) is NP-hard when 0 < α < 1,
we can not find the global optimality with polynomial-time
complexity. In the next section, we shall focus on designing
an efficient algorithm to find a local optimal point.

IV. α-FAIR POWER ALLOCATION FOR 0 < α < 1

In this section, we focus on α-Fair PA for 0 < α < 1. At
the beginning, let us present two important remarks about the
optimal solution of the problem in Eq.(3).

Remark 1. In the optimal power allocation vector, there is at
least one link utilizes the maximum allowed power, i.e., pmax

i .

Remark 1 can be explained as follows. Given any power
allocation p = (p1, p2, · · · , pM )T , by increasing all the com-
ponents of p by a factor η (η > 1), the rate of link i becomes

Ri(ηp) = log2

(
1 +

Gi,ipi
ni

η +
∑M

j=1,j ̸=i Gj,ipj

)
, (14)

which is obviously greater than Ri(p) [2]. Because α-utility is
increasing in rate, we can always increase the sum-utility by
increasing all components of p until one component achieves
pmax
i .

Remark 2. Even if Rreq
i = 0 for all links, the optimal rate

of each link is always grater than zero for 0 < α < 1. This is
because the derivative of Uα(x) is infinite at x = 0 and finite
at x > 0.

According to Remark 2, there always exists a positive value
Ci such that the optimal rate of link i is not less than Ci. In the
remainder of this paper, we replace constraint C2 of problem
Eq.(3) by C2′ given by

C2′ : Ri(p) ≥ Ci, i = 1, 2, · · · ,M, (15)
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where the value of Ci is carefully assigned as discussed as
follows.

• When Rreq
i > 0, we let Ci equal to Rreq

i . In this case,
constraint C2′ is the same as C2 and thus the optimality
does not change.

• When Rreq
i = 0, according to Remark 2, we can let Ci

equal to a very small positive value and the optimality
also does not change 1.

It should also be pointed out that we only consider the feasible
problem given in Eq.(3) 2.

In the following, we first transform the objective function
of the problem in Eq.(3) into a D.C. function. Then, an
algorithm is designed, followed by the discussion of the
validity, optimality, convergence, parameters setting and the
expansion of the proposed algorithm.

A. D.C. Formulation of the Objective Function

We note that the rate expression in Eq.(1) can be expressed
as a D.C. function over power vector p [4]. This is because
Ri(p) can be rewritten as

Ri(p) = ui(p)− vi(p), (16)

where both ui(p) and vi(p) are concave as given by

ui(p) = log2

ni +

M∑
j=1

Gj,ipj

 (17)

and

vi(p) = log2

ni +
M∑

j=1,j ̸=i

Gj,ipj

 , (18)

respectively.
Then, the following theorem transforms Uα(Ri(p)) into a

D.C. function over p.

Theorem 3. Uα(Ri(p)) can be written in a D.C. form.
Particularly, Uα(Ri(p)) can be expressed as

Uα(Ri(p)) = Uα(ui(p)− vi(p)) = gi(p)− hi(p), (19)

where gi(p) and hi(p) given respectively by Eq. (20) and Eq.
(21) are concave functions.

gi(p) = Uα(Ri(p)) + Zivi(p) (20)

hi(p) = Zivi(p) (21)

Here, in Eq.(20) and Eq.(21), Zi is a constant that is greater
than or equal to 1

Cα
i

, i.e., Zi ≥ 1
Cα

i
.

Proof: It can be easily derived that Uα(Ri(p)) = gi(p)−
hi(p), where gi(p) and hi(p) are given in Eq. (20) and Eq.
(21), respectively. Since vi(p) is concave and Zi is positive,
hi(p) is a concave function. In the following, we show that
gi(p) is also concave.

1Actually, in practical systems, link i should be given a positive minimum
required rate Rreq

i for data transmission. Otherwise, link i can be deleted.
2If the required rates of links are too high, the problem given in Eq.(3)

may be infeasible. We do not consider this case in this paper.

First, we note that Uα(t) is concave in (Ci,+∞) and the
derivative of Uα(t) is 1

tα . Then, we have

Uα(t) ≤ Uα(θ) +
1

θα
(t− θ), t ≥ Ci, (22)

for all θ ∈ [Ci,∞). Here, equality holds if and only if θ = t.
Therefore, it can be deduced that

Uα(t) = inf
θ∈[Ci,∞)

{
Uα(θ) +

1

θα
(t− θ)

}
= inf

θ∈[Ci,∞)

{
Uα(θ)− θ1−α +

t

θα

}
.

(23)

Replacing t by ui(p)− vi(p), we have

Uα(ui(p)− vi(p))

= inf
θ∈[Ci,∞)

{
Uα(θ)− θ1−α +

ui(p)− vi(p)
θα

}
.

(24)

Accordingly, it can be deduced that

gi(p)
=Uα(ui(p)− vi(p)) + Zivi(p)

= inf
θ∈[Ci,∞)

{
Uα(θ)− θ1−α +

ui(p)− vi(p)
θα

}
+ Zivi(p)

= inf
θ∈[Ci,∞)

{
Uα(θ)− θ1−α +

1

θα
ui(p) +

(
Zi −

1

θα

)
vi(p)

}
.

(25)

Then, due to Zi ≥ 1
Cα

i
≥ 1

θα for all θ ∈ [Ci,∞) and the
concavity of ui(p) as well as vi(p), gi(p) can be regarded
as the infimum of an infinite set of concave functions and
is thus concave [15], [16]. As a result, Uα(ui(p) − vi(p)) =
gi(p) − hi(p) is a D.C. function, which concludes the proof.

According to Theorem 3, the objective function of the α-fair
PA problem can be written as

M∑
i=1

Uα (Ri(p)) =
M∑
i=1

(gi(p)− hi(p))

=
M∑
i=1

gi(p)−
M∑
i=1

hi(p) = g(p)− h(p),

(26)

where both g(p) =
∑M

i=1 gi(p) and h(p) =
∑M

i=1 hi(p) are
concave functions. Hence, the objective function of the α-fair
PA problem can be presented by a D.C. function.

B. An Iterative Algorithm

Because of the D.C. objective function of the α-Fair PA
problem, we can design an iterative power allocation algorith-
m. In particular, given the power allocation vector pζ in the
ζth iteration, we approximate h(p) by its first-order Taylor
expansion, i.e., h

(
pζ
)
+▽hT

(
pζ
) (

p − pζ
)
, and optimize p in

the (ζ+1)th iteration. Specifically, pζ+1 is derived by solving
problem P1 given below.

P1 : max
p

g(p)−
(
h
(
pζ
)
+▽hT

(
pζ
) (

p − pζ
))

(27)

s.t. C1, C2′ (28)
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Obviously, P1 is a convex optimization problem which can
be efficiently solved by off-the-shelf solvers. The detailed al-
gorithm is presented in Algorithm 1, in which some parameters
are defined as: ζ is the iteration index, pζ is the power vector
after the ζth iteration and ε is the maximum tolerance for the
termination of the algorithm.

Algorithm 1 An iterative algorithm
1: Initialization

• Set p0, ε;
• Set ζ = 0;

2: repeat
3: Solve Problem P1 and derive p∗;
4: ζ = ζ + 1;
5: pζ = p∗;
6: until |pζ − pζ−1| ≤ ε

C. Discussion of the Proposed Algorithm

We now discuss the validity, convergence, optimality of the
proposed algorithm as well as the choice of Zi.

1) Validity: In each iteration in the proposed algorithm, we
approximate the second concave function of the objective, i.e.,
h(p), by its first-order Taylor expansion. Note that h(p) is
actually the sum of M log functions of an affine combination
of p. Therefore, this approximation is very close to h(p) in
a relatively large neighbourhood of a given pζ . The good
performance of this kind of approximation is also explained
in [4] and [13].

2) Convergence and Optimality: Similar to [13] and [17],
we can easily prove that the proposed algorithm always
converges to a local optimal point of the primal α-Fair PA
problem. Comparing with high computation complexity to get
the global optimality, we obtain a local optimal (or global
optimal in a two-link case) point with low complexity as
shown in Section V 3.

3) The Choice of Zi: The value of Zi needs to be carefully
determined in the proposed algorithm.

First, as illustrated in the proof of Theorem 3, Zi should
be large enough to guarantee the concavity of gi(p) given in
Eq.(20).

Second, too large Zi is also not a good choice for the
following reasons. In the (ζ + 1)th iteration, the objective
function is

g(p)−
(
h
(

pζ
)
+▽hT

(
pζ
)(

p − pζ
))

=

M∑
i=1

{
Uα(Ri(p)) + Zi

(
vi(p)− vi(pζ)−▽vTi (p

ζ)(p − pζ)
)}

.

(29)

Note that Zi

(
vi(p)− vi(pζ)−▽vTi (pζ)(p − pζ)

)
is the dom-

inant part of the objective function when Zi is sufficiently
large. Because vi(p) is concave over p, we have vi(p) −

3The proposed algorithm may also achieve the global optimality, although
we can not verify it [13].

vi(pζ) − ▽vTi (pζ)(p − pζ) ≤ 0, where equality holds if and
only if p = pζ . Therefore, maximizing Eq.(29) will result in
the pζ+1 that is very close to pζ . In other words, the algorithm
will converge very slowly.

As a result, in practice, we set Zi =
1

(Ci)α
.

4) Expansion: The core method of the proposed algorithm
can also be applied to a general concave and non-decreasing
utility function U(x) only by properly setting Zi. In the
following, we discuss the choice of Zi in two cases.

• U ′(0) = ∞
In this case, Remark 2 is still valid and there always exists
a positive Ci such that the optimal rate of link i is not
less than it. Then, similar to the proof of Theorem 3, we
can set Zi = U ′(Ci) and the sum-utility given by

M∑
i=1

U(Ri(p)) =
M∑
i=1

U(ui(p)− vi(p)) (30)

can be expressed in a D.C. form, where the first and the
second concave functions are given respectively by

g(p) =
M∑
i=1

U(ui(p)− vi(p)) +
M∑
i=1

Zivi(p) (31)

and

h(p) =
M∑
i=1

Zivi(p). (32)

• U ′(0) < ∞
In this case, by setting Ci = max{Rreq

i , 0} and Zi =
U ′(Ci), we can make sure that the expression in Eq.(30)
is a D.C. function, where the first and the second concave
functions are given by Eq.(31) and Eq.(32), respectively.

As a result, the proposed algorithm in Algorithm 1 can be
utilized to carry out power allocation for the corresponding
sum-utility maximization.

V. SIMULATION RESULTS

This section first shows that the proposed algorithm can
achieve the global optimal point in a two-link case. Then,
some results are presented in 10-link cases. Note that in the
following simulation, the noise power is ni = 0.1µW and
the maximum allowed transmit power is pmax

i = 1mW for
all links. The initial point of the proposed algorithm is set as
p0 = pmax.

A. Optimality in a Two-Link Case

We consider two links in the network and the channel gain
is

G =

[
0.4310 0.0605
0.0002 0.3018

]
. (33)

The minimum required rates of the two links are Rreq
1 =

Rreq
2 = 0.5bps.
According to Remark 1, in the optimal power allocation,

either link 1 or link 2 transmits with the maximum allowed
power. Therefore, we observe the optimal power allocation
by two one-dimensional searchings as shown in Fig.1. First,
by letting p1 = pmax

1 , we plot the sum-utility by varying p2
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Fig. 1. Optimality illustration with 2 links existing in the network.

(solid line in Fig.1). Second, by setting p2 = pmax
2 , we plot

the sum-utility by varying p1 (dash line in Fig.1). Then, the
highest point of the two curves indicates the optimal power
allocation and the optimal sum-utility.

We also simulate our proposed algorithm by letting Zi =
0.5−α for all links, where the achieved power allocation is
marked by green squares in Fig.1. Based on this figure, we
can see that the proposed algorithm achieves the global optimal
power allocation.

B. Performance in 10-Link Cases

Consider there are M = 10 links in the network. We
randomly pick 20 network realizations and simulate the α-
fair PA algorithm by varying α from zero to infinity, where
ε is set as ε = 0.5 × 10−3. Assume each link has the same
minimum required rate Rreq

i = 0.1bps. For a given α and a
given network setting, we utilize Jain’s index to evaluate the
degree of fairness. Here, the Jain’s index is defined as

Jain’s Index =

(∑M
i=1 Ri

)2
M
∑M

i=1 R
2
i

, (34)

which is bounded in [ 1
M , 1] [18]. Because its value can be

interpreted as the fraction of favored links, a larger Jain’s index
is more fair [9], [19].

Figure 2 presents the tradeoff curve between the averaged
sum-rate and the averaged Jain’s index across the 20 network
instances. The results in Fig.2 are derived in many ways
according to the value of α:

• α = 0: by the algorithm in [4];
• α = 1: by the convex optimization modeled in [3];
• α = ∞: by the linear programming modeled in [3];
• 1 < α < ∞: by the convex optimization modeled in

Eq.(4) in this paper;
• 0 < α < 1: by the proposed algorithm in Algorithm 1 in

this paper.
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Fig. 2. The tradeoff between sum-rate and Jain’s index by α-fair power
allocation.

These results in Fig.2 can be illustrated as follows. 1) We
string the three special cases α = 0, α = 1 and α = ∞ and
obtain a smooth tradeoff between sum-rate and Jain’s index.
In particular, if we increase α, a more fair power allocation
can be obtained; otherwise, a larger sum-rate can be got. 2) In
the interval 1 < α < ∞, the achieved curve is already global
optimal. 3) In the interval 0 < α < 1, it is credible that good
performance is achieved because it has a smooth transition
from the global optimal interval α ≥ 1 to the case α = 0.

In Fig.3, we also present the averaged iteration times of
the proposed algorithm for 0 ≤ α < 1. It can be seen that
the proposed algorithm converges to a local optimal point by
hundreds of iterations. This complexity is comparable with
(more exactly, 2-4 times) the complexity of the algorithm for
the case α = 0 in [4]. This a little increase of complexity
comes from the fact that, the case 0 < α < 1 corresponds to
maximizing the sum of concave utility of rate while the case
α = 0 represents the sum-rate maximization. Obviously, the
problem for the case 0 < α < 1 is more complex than the
case α = 0, although both of them are NP-hard.

VI. CONCLUSION

In multi-link one-tone spectrum-sharing networks, we
proved that the α-fair PA problem is convex when 1 < α < ∞,
which indicates that a standard convex solver can find the
global optimality with polynomial complexity. We also showed
that the problem is NP-hard when 0 < α < 1. To deal
with this difficult case, based on the D.C. formulation of the
objective function, we designed an iterative algorithm which
can efficiently converge to a local optimal point. Simulation
results showed that the global optimality is achieved in two-
link cases. In addition, a smooth tradeoff between sum-rate and
Jain’s index is obtained by varying α from zero to infinity.
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